Automatic Genre Classification Using Large High-Level Musical Feature Sets

نویسندگان

  • Cory McKay
  • Ichiro Fujinaga
چکیده

This paper presents a system that extracts 109 musical features from symbolic recordings (MIDI, in this case) and uses them to classify the recordings by genre. The features used here are based on instrumentation, texture, rhythm, dynamics, pitch statistics, melody and chords. The classification is performed hierarchically using different sets of features at different levels of the hierarchy. Which features are used at each level, and their relative weightings, are determined using genetic algorithms. Classification is performed using a novel ensemble of feedforward neural networks and k-nearest neighbour classifiers. Arguments are presented emphasizing the importance of using high-level musical features, something that has been largely neglected in automatic classification systems to date in favour of low-level features. The effect on classification performance of varying the number of candidate features is examined in order to empirically demonstrate the importance of using a large variety of musically meaningful features. Two differently sized hierarchies are used in order to test the performance of the system under different conditions. Very encouraging classification success rates of 98% for root genres and 90% for leaf genres are obtained for a hierarchical taxonomy consisting of 9 leaf genres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Musical genre classification of audio signals

Musical genres are categorical labels created by humans to characterize pieces of music. A musical genre is characterized by the common characteristics shared by its members. These characteristics typically are related to the instrumentation, rhythmic structure, and harmonic content of the music. Genre hierarchies are commonly used to structure the large collections of music available on the We...

متن کامل

Automatic Genre Classification of MIDI Recordings

A software system that automatically classifies MIDI files into hierarchically organized taxonomies of musical genres is presented. This extensible software includes an easy to use and flexible GUI. An extensive library of high-level musical features is compiled, including many original features. A novel hybrid classification system is used that makes use of hierarchical, flat and round robin c...

متن کامل

Semi-Supervised Classification of Musical Genre using Multi-View Features

Musical genre classification is a key problem in multimedia information retrieval. Traditional musical genre classification methods are complete supervised, i.e., large amount of annotations are needed. In addition, if more than one feature sets are used, they are simply concatenated to form a long feature vector, which is sometimes problematic. To solve these problems, we introduce to use mult...

متن کامل

Automatic Music Annotation

In the last ten years, computer-based systems have been developed to automatically classify music according to a high-level musical concept such as genre or instrumentation. These automatic music annotation systems are useful for the storage and retrieval of music from a large database of musical content. In general, a system begins by extracting features for each song. The labels and features ...

متن کامل

Multiexpert System for Automatic Music Genre Classification

Automatic classification of music pieces by genre is one of the crucial tasks in music categorization for intelligent navigation. In this work we present a multiExpert genre classification system based on acoustic, musical and timbre features. A novel rhythmic characteristic, 2D beat histogram is used as high-level musical feature. Timbre features are extracted by multiple-f0 detection algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004